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ABSTRACT

Wadi Umm Nafie area is located between lat. 26° 18" - 27° 05" N and long. 33° 23" and 33° 29" E.
The rocks cropping out in the area are older granitoids and younger granites. The studied area displays
secondary structures which are represented by joints and faults. The most predominant fault sets are trending
in NE-SW, NNW-SSE and NW-SE directions. Petrographically, the older granitoids are classified as quartz
diorites and the younger granites as syenogranites. The radioactivity of the syenogranites is significantly
high, comparing with the older granitoids. The anomalous syenogranite (about 1x5m dimensions) exhibits
equivalent uranium occurrences that vary considerably in their contents from 115.5 to 125 ppm with an
average of 122.8 ppm and from 139.2 to 168.6 ppm equivalent thorium with an average of 155.4 ppm.
Th-U, Zr-U, Zr-Th, , Nb-U, Nb —Th relationships show ill-defined trends, suggesting that radioelements
distribution aren’t controlled by accessory minerals but essentially related to the latter hydrothermal
solutions. Anomalous syenogranite is affected by various phases of hydrothermal alteration processes along
brittle structures, comprising hematitization, chloritization, epidotization, silicification and kaolinitization.
Unusual REEs patterns and non-CHARAC ratios of isovalents confirm that the anomalous syenogranite is
affected by late stage hydrothermal solutions resulting fluid-rock interaction and M-type tetrad effect. U
and REEs could be leached from the sheared syenogranite at low pH conditions and precipitated in alkaline
environments by hematitization process. The main minerals occur in the highly radioactive syenogranite
are thorite, uranothorite, betafite, yttrocolumbite, samarskite, ishikawaite, polycrase and fergusonite, in
addition to zircon, xenotime, allanite, cerite and monazite.

INTRODUCTION

The studied area represents a part of the
Precambrian basement complex of the north-
ern Eastern Desert (NED) of Egypt; it covers
about 130 km? of crystalline basement rocks.
It is bounded by lat. 26° 18" to 27° 05" N and

ged topography due to the presence of moder-
ate to high mountains as Gabal (G.) Thilmah
and G. Shayib Al-Banat. The area is character-
ized by arid climatic conditions and very rare
vegetation.

There are more than twenty uranium oc-

long. 33° 23" to 33° 29" E (Fig. 1). The study
area located at about 65 km west of Hurghada,
Red Sea. Generally, it is characterized by rug-

currences in the northern parts of G. Gattar
granite (Shalaby, 1996; El Zalaky, 2002; El
Kholy el al., 2012). These occurrences were
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Fig. 1: a) Landsat image and b) Geologic map of Umm Nafie area
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named, according to date of discovery as, G-I,
G-11, G-III, G-1V, G-V...etc.

Tetrad effect from various geochemical
systems is represented by irregular patterns in
the normalized REE distribution and consid-
ered as indication of geochemical processes
occurring in the media of mineralization. This
feature known also as the ‘double-double ef-
fect’, ‘kinked effect’, or ‘zigzag effect’ as a
new geochemical/mathematical-based tool to
interpret irregular curves in normalized REE
distribution patterns in a wide range of depos-
its (Cao et al., 2013; Lee et al., 2013; Duc-Tin
and Keppler, 2015; Abedini et al., 2017; Reza-
ei Azizi et al., 2017; Abedini et al., 2018a).
The existence of the tetrad effect in normal-
ized REE distribution patterns can be distin-
guished by the presence of M and/or W forms
of curves in four discrete groups of REE, first,
(1) La-Ce-Pr-Nd, (2) second, Pm-Sm-Eu-Gd,
third, Gd-Tb-Dy-Ho, and fourth tetrads repre-
senting four groups of rare earth elements Er-
Tm-Yb-Lu, respectively (Feng et al., 2011).

The present work deals with the geology
and radioactivity of the different rock types
exposed at Wadi (W.)Umm Nafie area with
emphasis on the younger granites (syenogran-
ites), which constitutes the dominant part of
the studied area in order to clarify their radio-
active potentialities.

GEOLOGIC SETTING

A geological map at scale 1: 50,000 was
prepared for the studied area (Fig. 1) using
aerial photographs, TM Landsat images and
extensive fieldwork. According to field stud-
ies, the rocks cropping out in the area are:
1) older granitoids (oldest), and 2) younger
granites (youngest). These rocks are mostly
invaded by felsic and mafic dykes, generally
striking NE-SW to ENE-WSW directions.

The older granitoids are exposed as low
hills and masses along the peripheries of the
younger granite (Fig.2). They are dark grey
in colour, medium to coarse-grained, highly
weathered and highly jointed. They are char-

acterized by low to moderate relief, exfolia-
tion and boulder weathering. In some parts,
these rocks are carbonitized and hematitized,
especially in the highly fractured zones due to
the effect of hydrothermal solutions.

The younger granites occur as a number
of medium to high elevated outcrops. They
are represented by (G.) Thilmah (eastern part
of Gattar batholith) and G. Shayib Al-Banat.
These younger granites intrude the older
granitoids with sharp intrusive contacts; the
contacts usually dip toward the older granit-
oids (Fig.3). Sometimes, they send several
offshoots into the older granitoids. In some
parts, the older granitoids occur as roof pen-
dant over the younger granites (Fig. 4). The
younger granites usually contain xenoliths of
different shapes and sizes from the older gran-
itoids. The size and number of these xenoliths
increase near the contacts with the older gran-
itoids.

The younger granites are pink in color,
medium to coarse-grained, sometimes por-
phyritic and contain a relatively high content
of mafic minerals. They are characterized by
exfoliation, boulder appearance and cavern-
ous weathering. Along joints and fault planes,
these rocks show different degrees of altera-
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Fig.2: Older granitoids exposed as low hills
and masses along the peripheries of the
younger granites, W. Umm Nafie, looking
west
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Fig.3: Younger granites intruded in older

granitoids with sharp intrusive contact,

W.Umm Nafie, looking south

Fig.4: Older granftoids oceur as roof per;dant
over the younger granites, W. Umm Nafie,
looking west

tion; the most common alteration features are
hematitization, chloritization, epidotization,
silicification and kaolinitization (Fig.5).

The syenogranite of G. Thilmah host a
zone of radioactive anomaly (about 1x5m di-
mensions) which is located in the eastern part
of G. Thilmah near its contact with quartz
diorites. It is represented by a strongly hema-
titized sheared granitic zone striking NNW-
SSE. This zone includes discontinuous radio-
active lenses of reddish brown color (Fig. 6).
The granite at this location, are medium- to
fine-grained, of reddish brown color, highly
sheared and kaolinitized.

Fig.5: Close up view showing kaolinitization
in younger granites, W.Umm Nafie

WG o i AN 2 \
: up view showing radioactive
lens in strongly hematitized sheared granitic
zone, W.Umm Nafie area

Dykes, Veins and Pockets

Numerous felsic and mafic dykes of
variable length and thickness are recorded
traversing the studied rock types (Fig. 7).
The acidic dykes stop when encountering
the younger granites of Gattar batholith,
indicating a relative younger age for latter.
The majority of the dykes show a uniform
thickness, however, few dykes are of a
variable thickness along their strike. Usu-
ally, the dykes occur in parallel swarms.
The main trends of these dykes are NE-SW
and ENE-WSW. The study area comprises
several quartz veins of different thickness
and lengths as well as pegmatite pockets of
different sizes.
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Fg.7: Set of acidic dykes ctting in younger
granites, W. Umm Nafie, looking SW

Structures

The study area as a part of the northern
Eastern Desert consists of Precambrian base-
ment complex. Structures observed in the area
are almost of the secondary type such as faults
and joints. These secondary structures are re-
lated to the intense tectonics affecting the area.
All the studied rocks are jointed, the majority
of these joints are tension joints which may
still empty or filled with quartz, feldspars, epi-
dote, iron and manganese oxides. The shear
joints are few and mostly parallel or sub-paral-
lel to the main fault trends. They tend to form
two complementary conjugate sets (Fig.8).

The studied area is dissected by numerous
faults of different ages and trends. The fault
zones are marked by fault breccia and altera-
tions represented by hematitization, epidotiza-
tion, silicification, chloritization, and kaolin-
itization (Fig. 9).

The attitudes of 19 major fault lines have
been recorded and statistically treated (Table
1). Based on length and number proportions
of the measured faults, structural analyses are
represented by two rose diagrams (Fig. 10 &
11); these diagrams indicate that the common
trends are NE-SW, NNW-SSE and NW-SE.
This means that the structures in the studied
area are following the Red Sea major faults.

Fig. 8: Close up view showing tow conjugate
shefaitr joints in younger granite, W.Umm
Nafie

& 5 o3
Fig.9: Close up view, showing hematitization,
chloritization and kaolinitization along
fracture surface in younger granites, W.Umm
Nafie area
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Fig.10: Rose diagrams showing the main
directional trends of fault lines according to
their number proportion, W.Umm Nafie area
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Fig.-llz- Rose didgrarhs -shOWin_g- the main
directional trends of fault lines according to
their length proportion, W.Umm Nafie area

Sampling and Methodology

To investigate the mineralogy and radioel-
ements as well as the geochemical variations
of Umm Nafie samples, five samples from the
younger granites (syenogranites) were col-
lected. Also for petrographic and radioactive
studies, three samples from the older granit-
oids (quartz diorites) were collected. Firstly,
the concerned samples were subjected to the
petrographic study.

Secondly, a calibrated portable gamma-

ray spectrometer (model RS-230) was used
to measure the gamma-rays emitted from the
daughters of U and Th and outputs the equiva-
lent concentration of uranium (eU) and tho-
rium (eTh) in ppm.

Thirdly, representative chemical analyses;
major oxides, trace elements and 14 REE of
five anomalous syenogranite were carried out
using the Inductively Coupled Plasma Mass
Spectrometry (ICP-MS) in the ACME Labs,
Vancouver, Canada.

Finally, the anomalous syenogranite sam-
ples were subjected to heavy liquid separation
(Bromoform solution (Sp.gr. 2.85g/cm?) and
picking. Consequently, the magnetic separa-
tion will be done in two steps, the first include
the separation of magnetite by a hand magnet,
and the second is separation of radioactive
as well as some economic minerals through
different magnetic susceptibilities using the
Frantz Isodynamic Magnetic Separator (Mod-
el L1). Hence the obtained magnetic subfrac-
tions were carefully examined using Binocu-
lar Stereomicroscope. Thus, the identification
of the different minerals in the studied rocks
of W. Umm Nafie area was carried out using
a Philips Environmental Scanning Electron
Microscope (ESEM) model XL30 in NMA
Labs.

Table (1): Frequency distribution and main trends of major faults affecting W. Umm

Nafie area

Set Trendsof  Number of Number Total length Length
No. faults faults  proportion (km)  proportion
(N%) (L%)

1 WNW- ESE 1 53 9 3.7
2 NW -SE 3 15.8 315 13
3 NNW-SSE ol 21 54.4 22.4
4 N-S 1 5.3 23.4 9.6
5 NNE-SSW 2 10.5 9 3.7
6 NE-SW 5 26.3 94.5 39
7 ENE-WSW 2 10.5 17.1 7.1
8 E-W 1 5.3 3.6 15
Total 19 100% 242.5 100%




GEOLOGICAL, MINERALOGICAL AND GEOCHEMICAL ASPECTS OF

PETROGRAPHY

The modal composition of three samples
from the older granitoids and five ones from
the younger granites were tabulated in Table
(2) and plotted on the QAP diagram (Streck-
eisen, 1976). The older granitoids plot in the
quartz diorite field, while the younger granites
plot in the syenogranite field (Fig. 12).

Quartz diorites are medium- to coarse-
grained essentially composed of plagioclase,
quartz, biotite, hornblende and minor alkali
feldspars as essential minerals. Titanite, zir-
con, apatite and opaques represent the acces-
sory minerals. Epidote, chlorite, sericite and
kaolinite occur as secondary minerals. Plagio-
clase (An,-An,,) occurs as euhedral to subhe-
dral crystals showing lamellar twinning. Some
plagioclase crystals display oscillatory zoning
with an altered core and fresh rims (Fig. 13).
Quartz occurs as interstitial anhedral crystals
filling the spaces between the early-formed
minerals indicating later stage of crystal frac-
tionation.

Potash feldspars are very rare. Biotite oc-
curs as irregular flakes, most of them are al-
tered to chlorite and iron oxides especially
along the cleavage planes and their margins.
Hornblende found as subhedral prismatic
crystals of green colour.

Syenogranite is generally porphyritic
(sometimes equigranular), medium- to coarse-
grained with hypidiomorphic texture. These
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Fig. 12: Q-A-P ternary diagram (Streckeisen,
1976) for the studied quartz diorites (O) and
syenogranite (+), W. Umm Nafie arca

Fig. 13: Plagioclase crystal showing altered
core and fresh rims, quartz diorites, XPL

Table 2: Modal analyses of the studied older granitoids (quartz diorites) and younger

granites (syenogranites), W. Umm Nafie area

_Rocktype | Quartzdiorites Syenogranites
Sample No. 1 2 3 o4 5 6 7 8
Quartz 15.5 14.6 13.3 39.3 43.1 412 378 427
Plagioclase 62.8 63.9 64.9 9.9 11.3 10.1 119 10.1
Alkali feldspars 4.7 4.5 5.2 452 402 439 459 445
Biotite 7.3 8.1 8.2 2.2 21 19 17 1.2
Hornblende 3.8 43 45 2.3 1.6 1.7 19 038
Accessories and 5.9 4.6 3.9 1.1 1.7 1.2 08 07

opagues
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rocks composed of potash-feldspar, quartz,
plagioclase and biotite as essential minerals.
The main accessories are zircon, apatite and
iron oxides whereas chlorite, sericite and ka-
olinite are the common alteration products.

The potash-feldspars are represented by
perthites. They occur as subhedral to anhedral
prismatic crystals of flame- and patchy-type
(Fig. 14). Sometimes, it is altered to sericite
especially at the crystal cores (Fig. 15). Quartz
occurs as coarse and fine anhedral grains
showing undulose extinction and cracking
due to local deformation. Plagioclase occurs
as subhedral prismatic crystals (Fig. 16). Oc-
casionally, it transformed to clay minerals and
carbonate (Fig. 17). Biotite found as elongated
flakes and sometimes altered to chlorite. Zir-
con and apatite occur as prismatic crystals
commonly enclosed within plagioclase, bio-
tite and quartz.

RADIOACTIVITY

During this study, all lithological types
exposed in the area of study were radiometri-
cally surveyed. Particular attention was paid
on all structural features such as contacts and
faults as well as hydrothermally altered zones.
Table (3) summarizes the measured equivalent
uranium (eU) and equivalent thorium (eTh)
contents in ppm.

Fig. 14: Euhedrl of perthite,

syenogranite, XPL

crystal
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Fig.16:  Subhedral crystal of plagioclase,
syenogranite, XPL

."' e B ; ..—' m‘
Fiig.717:7 Phienocryst of plagioélase transformed
to carbonate, syenogranite, XPL
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Table 3: eU and eTh contents (in ppm) and their ratios in the studied rock

types of W. Umm Nafie area

Rock type Quartz Syenogranites Anomalous

diorites (N = 150) syenogranite

Content (N =50) (N =30)
eU Minimum 1.8 5.2 115.5
(ppme Maximum 53 8.4 125.0
________________ Average 29 75 1228
eTh Minimum 5.8 9.4 139.2
~(ppme Maximum 15.6 21.6 168.6
____________ Average 104 164 _______ 1554
«eU/eTh Minimum 0.23 0.32 0.71
Maximum 0.31 0.52 0.98
___________ Average 028 _______046________ 079
~eTh/eU Minimum 2.32 1.02 1.10
Maximum 4.11 2.83 1.35

Average 3.55 2.19 1.26

The eU of the fresh syenogranite ranges
between 5.2 and 8.4 ppm with an average of
7.5 ppm and eTh from 9.4 ppm to 21.6 ppm
with an average of 16.4 ppm, while at the ra-
dioactive spots in the anomalous syenogran-
ite, the average of eU rises to 122.8 and the
average eTh to155.4 ppm. The increasing in
radioactivity of the anomalous syenogranite
could be related to post-magmatic processes
by hydrothermal solutions.

Assaf et al. (1997) concluded that uranif-
erous granite contain more than 18 ppm ura-
nium. The studied anomalous syenogranite
show average eU contents greater than 124
ppm. Cambon (1994) concluded that the rocks
of eU/eTh average ratios greater than 0.4 are
considered to be favorable environment for
uranium deposits. The studied syenogranite
and anomalous syenogranite show eU/eTh av-
erage ratios greater than 0.4 (Fig. 18), suggest-
ing the favorability of the studied granites for
uranium mineralization.

Normally, thorium is three times as abun-
dant as uranium in rocks (Rogers and Adams,
1969). When this ratio is disturbed, it indicates
a depletion or enrichment of uranium. In this

work, syenogranite and anomalous syeno-
granite show eTh/eU average ratios lower than
3 (Fig. 19), suggesting addition of uranium to
these rocks during secondary processes. On
the other hand, quartz diorite show eTh/eU
average ratios greater than 3, suggesting ura-
nium depletion or leaching.

Geochemical Characteristics of the
Anomalous Syenogranite

The distribution of the major oxides, trace
elements and REEs in the anomalous syeno-
granite (Table 4) yielded useful information
on rock/fluid interaction characteristics in ad-
dition to the physicochemical conditions of
the system. During the hydrothermal altera-
tion, nearly all the trace elements were mobi-
lized due to dissolution or replacement of the
main components and accessory minerals and
new-formation of mineral phases (El Mezayen
etal., 2016).

Hughes (1972) diagram indicate alkali
compositions of igneous rocks, the studied al-
tered syenogranite fall within the Na-altered
(Fig.20). The altered granite sample shifted
towards the greisen field on the normative Qz-
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Fig. 19: eTh/eU ratios in the studied rocks, W.Umm Nafie area

Ab-Or of Stemprok (1979), (Fig.21). By using
the Na,0—K,O variation diagram (Cuney et
al., 1987), it is evident that three of the studied
samples sign in the argilllation field while the
other two sample fall in the silicification field
(Fig.22).

The CIA values can be plotted graphically
in the A-CN-K diagram in a more accurate as-
sessment of weathering trends and conditions
(Nesbitt and Young, 1984). In this diagram, all
the studied samples were laid in a tight clus-
ter near the A apex and parallel to the weath-
ering trend (Fig.23). Al and Ga are enriched

in kaolinite associated with strong chemical
weathering under a warm and humid climate
(Ratcliffe et al., 2010) while K and Rb are
associated with illite, reflecting dry and cool
climatic conditions. Consequently, sediments
rich in kaolinite should have high Ga/Rb and
low K,0/ Al O, ratios, whereas those rich in il-
lite will have low Ga/ Rb and high K, O/ALO,
ratios (Roy and Roser, 2013). Ga/Rb ratios in
the altered syenogranite are low (0.21) and
high in K,0/A1,0, (0.28), suggesting a supe-
riority, of illite produced during dry and cool
climatic conditions (Fig.24).
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arca
Elements NA1 NA2 NA3 NA4 NAS AV.
Major oxides (wt. 20)
SiO» 73.5 72.7 74.6 73.8 72.9 73.5
TiO, 0.33 0.3 0.27 0.02 0.02 0.2
Al;O3 12.6 12.6 12 12.5 12.7 12.5
Fe>O3 1.1 15 1.6 1.4 1.4 1.4
MnO 0.04 0.04 0.04 0.06 0.06 0.0
MgO 0.63 0.61 0.48 0.13 0.13 0.4
CaO 1.02 1.06 0.46 1.73 1.6 1.2
Na.O 3.95 3.95 3.83 3.39 3.41 3.7
KO 4.94 4.5 4.16 4.9 5.1 4.7
P,Os 0.082 0.07 0.06 0.005 0.01 0.0
L.O.1 1.3 2.1 1.5 1.3 1.7 1.6
_Total _ _ _ ______9949_ _ ____ 99.43 _ _ _ __ ¢ 99.00 _ ___._9924_ _ ____ 99.03 _ _ _ € 99.2 _
Trace elements (ppm)
Cr 30 68 49 58 49 50.8
Ba 71 79 75 77 75 75.4
w 5 8 6.5 7 6.5 6.6
Zr 192 186 191 188 189 189.2
Sn 42 41 41 42 41.33 41.5
As 2.2 23 2.25 2.27 2.25 23
U 116 120 130 100 125 118
Th 210 190 230 215 225 214
Sr 86 82 84 83 84 83.8
Cd 0.02 0.02 0.02 0.02 0.02 0.0
Sb 0.18 0.17 0.17 0.17 0.173 0.2
Bi 0.27 0.34 0.3 0.32 0.303 0.3
\Y4 2 3 25 2.75 2.5 2.6
Be 8 7 7.5 7.25 7.5 7.5
Sc 0.8 0.7 0.75 0.73 0.75 0.7
Mo 1.3 2.56 1.9 2.2 1.92 2.0
Cu 9 12 11 12 10.6 10.9
Pb 24.38 25.73 25 25.4 25.03 25.1
zn 88 86 87 85 87 86.6
Ni 25 4.4 3.45 4 3.45 3.6
Co 1.2 1.7 1.45 1.57 1.45 1.5
Y 101.4 88.4 94.9 91.6 94.9 94.2
Hf 26 22.7 24.3 235 24.3 24.2
Li 21.5 20.6 21.05 20.8 21.1 21.0
Rb 180.7 181.8 181.5 181 181.3 181.3
Ta 43 35 39 37 39 38.6
Nb 167 144 160 150 155.3 155.3
Cs 3 2.9 2.95 29 2.95 2.9
Ga 39 39.4 39.3 39.3 39.23 39.2
Se 0.3 0.4 0.35 0.37 0.35 0.3
Nb/Ta 3.88 4.11 4.10 4.05 3.98 4.02
Zr/Hf 7.38 8.19 7.86 8.00 7.78 7.82
_Thy o ______ 2 18_ _ _____ 16 - ______ i8 _ _____22_______ 18 ___ . 18 _
Rare earth elements(ppm)
La 12.4 13.1 13 13 12.8 12.9
Ce 39 43 41 43 41 41.4
Pr 6.5 6.7 7 7 6.73 6.8
Nd 27.7 28.9 28 29 28.2 28.4
Sm 11 10.3 11 10 10.7 10.6
Eu 0.3 0.3 0.2 0.2 0.2 0.2
Gd 12.4 10.7 12 11 11.7 11.6
Tb 3.1 2.7 3 3 2.93 2.9
Dy 21.4 18.1 20 19 19.8 19.7
Ho 5.2 4.2 5 4 4.8 4.6
Er 17.7 14.8 16 16 16.2 16.1
™m 4.2 3.4 4 4 3.87 3.9
Yb 32.8 28 30 29 31 30.2
_Lbw ___________E 59_ _ _____ a7 S -5 ______ 52 ____ 52 _
Some calculated values
LREEs 96.82 103 100 101 100 100.2
HREEs 102.7 86.6 95 91 95 94.1
LREE/HREE 0.94 1.19 1.05 1.11 1.05 1.06
REEs 199.5 189.6 195 192 194.7 194.2
Y/Ho 19.5 21.0 19.0 22.9 19.8 20.3
La/Y 0.12 0.15 0.14 0.14 0.13 0.14
Sm/Nd 0.40 0.36 0.39 0.34 0.38 0.37
Sr/Eu 287 273 420 415 420 363
Eu/Eu* 0.14 0.16 0.1 0.11 0.1 0.1
Ce/Ce* 1.15 1.2 1.3 1.2 1.17 1.3
T: 1.2 1.2 1.3 1.3 1.2 1.2
T3 1.10 1.13 1.09 1.24 1.11 1.13
Ta 1.19 1.07 1.13 1.11 1.09 1.2
Tis 1.2 1.18 1.17 1.24 1.17 1.2
T14 1.20 1.15 1.19 1.18 1.16 1.17
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Fig.20:Total alkalis (wt.%) versus K O/total
alkalis binary diagram of Hughes (1972).A. Na-
hydrothermal alteration field; B. K-hydrothermal
alteration field; C. normal igneous evolutional trend,
D. normal granitic field
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Fig. 21: Normative Q-Ab-Or ternary diagram,
showing the type of alteration, after Stempork
(1979). The ternary minimum for 1 kb H O
pressure from Tuttle and Bowen (1958) and
Manning (1981)

Geochemistry of Major and Trace
Elements in the Anomalous Syenogranite

Hydrothermal alteration causes mobiliza-
tion of most trace elements, due to the dissolu-
tion of minerals and the formation of new min-
eral phases (El-Mezayen et al., 2015: Abedini
et al., 2018a: Ebyan et al., 2019). The loss and
gain of some elements are mainly attributed to
the variations in the geochemical characteris-
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Fig. 22: Na%- K% variation diagram, showing
the alteration type, after Cuney et al. (1989)
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tics of the altered syenogranite. To understand
the geochemical behavior of elements in the
altered granites, it is recommended to normal-
ize the pattern of such altered rocks to primi-
tive mantle (McDonough and Sun, 1995). Af-
ter that, the reference granite pattern becomes
flat at unity and the relative depletion or en-
richment is given by the deviations on both
sides of the reference line (Figs.25a&b).

Geochemistry of major oxide is discussed
in terms of gains (positive) and losses (nega-
tive) of these elements during the alteration
of granites. The alteration processes show

an enrichment of some major oxides such as
(8i0,, TiO,, only in samples 1, 2& 3, AL O,,
and Na,O, K,0 and P,O,, in most samples ex-
cept sample 4) and depletion of others (TiO,,
only in samples 4&5, Fe,O,, MnO, MgO, CaO
and P,O,, only in sample 4. The enrichment of
ALQ, could be due to the alteration of feld-
spars (sericitization), while the enrichment
of Na,0 and K,O are ascribed to the alkali
metasomatism. The depletion of Ca could be
resulted from feldspar alteration and release
of these elements into the fluids responsible
for alteration. The enrichment of the above
major oxides is associated with the increase

=NA4 = NA

i

O

Fig.25:Histogram showing the depletion and enrichment of
major oxides and trace elements of the altered syenogranite
normalized to those of the primitive mantle values of Sun and

McDonough (1989)
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of some trace elements such as Ba, W, Zr, Sn,
As, U, Th, Sr, Bi, Mo, Pb, Zn, Y, Hf, Li, Rb,
Ta, Nb, Ga and decrease in the other trace ele-
ments (Cr, V, Sc, Cu, Ni and Co) relative to the
primitive mantle. Rb increases with increasing
K-feldspar and sericite. Ekwere (1985) indi-
cate that Rb concentration increases in liquids
rich in volatile components, being concentrat-
ed during the late magmatic differentiation.
Na-metasomatism only increases Sr while K-
metasomatism leads to Ba increasing (Cuney
et al. 1989; El Mezayen et al. 2016). High Y,
Nb and Ta contents may be ascribed to the
presence of betafite, yttrocolumbite and fergu-
sonite in the studied rocks.

Geochemistry of Isovalents

Y/Ho

Y/Ho ratios for the crust, mantle and high-
temperature hydrothermal fluids are within the
range of ~26-28, whereas this ratio for sea-
water and marine sediments increases to ~47
(Gadd et al., 2016). The studied samples have
Y/Ho ratios lower than the Chondritic value
(Av.20.3). The complexation with fluorine
is interpreted as a major cause for Y/Ho>28,
while the complexation with bicarbonate is as-
sumed to generate Y/Ho values <28, suggest-
ing complexation with bicarbonate.

Zr/Hf

Despite the similar behavior of Zr and Hf,
the variation of the Zr/Hf ratio in a geochemi-
cal system can be attributed to fractional crys-
tallization, hydrothermal solutions, fluids re-
sponsible for metamorphism, and tetrad effect
(Bau, 1996; Tang et al., 2014; Rezaci Azizi et
al., 2017; E1 Mezayen et al., 2019; Dostal and
Chatterjee, 2000). Zr/Hf ratios of the studied
samples have non-CHARAC ratios (av. 7.82)
which are quite consistent with tetrad-effects
of the corresponding samples. The Y/Ho and
Zr/Hf ratios can reflect the physico-chemical
conditions of the depositional environment.
Accordingly, the non-CHARAC ratios of
these pairs can be related and interpreted by
tetrad-effect phenomenon (Rezaei Azizi et al.,
2017).
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Nb/Ta

Nb and Ta behave similarly in geochemi-
cal processes (Ballouard et al., 2016), but frac-
tionation of Nb from Ta has been reported in
various geological environments (Tartese &
Boulvais 2010; Stepanov et al., 2014; Dostal
etal., 2015). Although the solubility of Nb and
Ta increase with fluid temperatures (Badanina
et al.,, 2010), their solubility's in F-bearing
solutions increase under reducing conditions
(Zaraisky et al., 2010). Stepanov et al. (2014)
demonstrated that solubility of Nb increases
with temperature. This brings about high Nb/
Ta ratios in high-temperature deposits. This
increase can be related to destruction of biotite
which preferentially has higher Nb content.
On the other hand, the solubility of Nb and
Ta in aqueous systems is very low (Zaraisky
et al.,, 2010). The chondritic ratio of Nb/Ta
is 17.6 +1. The studied altered granites show
non-chondritic ratios for Nb/Ta (Av. 4.02).

Rare Earth Elements (REEs)

Rare earth elements were often accepted
as rather immobile elements, but more recent
studies showed that they can be mobilized by
hydrothermal fluids circulation (Michard and
Albarede, 1986). Most REEs are transported
in alkaline solutions as carbonate, sulphate or
fluorine complexes. Also, Zr and Th may be
mobile especially in high temperature hydro-
thermal environments with strong complexing
agents such as fluorine, sulphide and others
(Keppler H. 1993). Table (4) shows the REEs
concentration of the studied anomalous sy-
enogranite and Figure (26) shows normalized
REEs patterns.

Eu, Ce Anomaly and La/Y Ratio

Europium anomaly (Ew/Eu*=Eu/
(Sm xGd,)"®) are mainly controlled by pla-
gioclase fractionation especially in felsic
magmas. Thus, removal of feldspars from a
felsic melt by crystal fractionation or by par-
tial melting of a rock in which feldspars are
retained in the source will give rise to nega-
tive Eu anomaly in REE patterns (Singh et al.,
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2006). The Ce and Eu anomalies generally de-
pend on Eh (fO,) and pH of solutions during
deposition processes (Abedini et al., 2017).
The oxidation of Eu** converts to Eu*" under
higher fugacity of oxygen and is characterized
by negative Eu anomalies (Tang et al., 2013).

The La/Y values, as an indicator of acid-
ity-alkalinity, display two separate groups.
The first group has higher La/Y values (>1),
being indicative of alkalic conditions. The
second one has relatively lower La/Y values
(<1), and can be attributed to acidic conditions
(Maksimovic and Pant6, 1991). All the stud-
ied samples have La/Y values (<1), suggesting
acidic conditions in the environment of REEs
precipitation. Therefore, the higher fugac-
ity of oxygen in the low pH solution causes
increase the amounts of Eu®* in the solutions
reacted with parental rocks. Under these con-
ditions, the mineral phases precipitated from
such solutions can produce negative Eu in
mineral phases. Abedini et al. (2016 & 2019)
suggested that a negative Eu anomaly can be
attributed to low pH of fluids/solutions during
geochemical processes.

Ce anomaly Ce/Ce* (Ce/Ce*=Ce,/ (Lax
Pr,) ®°) is strongly controlled by fO, (Dill et
al., 2016). Oxidizing environments causes
Ce*" to be converted into Ce*" with smaller
ionic radii and higher charge (Kraemer et al.,
2017). Ce in a tetravalent oxidation state is
generally much less mobile relative to other
REE**. This means that under oxidation condi-
tions Ce*" increase in the sediments and causes
positive anomaly (Mongelli et al., 2014).

Ce anomaly in all samples are positive,
suggests the oxidizing condition, under which
the REEs were precipitated, where cerium
oxidizes to its immobile Ce*" state.

REE can be easily leached from weathered
environments under low pH conditions and
can be precipitated in alkaline environments
by the presence of scavenging agents (e.g., Fe-
oxides/ hydroxides) that cause their fixation
(Ohta et al., 2009; Sasmaz et al., 2014, 2017).
The high HREEs content relative LREEs may

clarify that LREEs could be precipitated with
uranium elsewhere in the sheared granites. El
Feky (2011) shows the presence of mirroring
between HREEs and LREEs in Gattar granites
and Hammamat sediments.

Tetrad Effect

Masuda et al. (1987) classified the tetrad
effect into two different types, M-and W-type
(M-type in solid sample as residues and W-type
in the interacting fluids as extract). The values
of tetrad effect were calculated according to
the quantification method of Irber (1999): t, =
(Ce/Ce*xPr/Pr*) t, = (Tb/Tb*xDy/Dy*)

t, = (Tm/Tm*xYb/Yb*) Degree of the tet-
rad effect T, ;= (t,xt,) *°

The calculated values of the tetrad effect
average about 1.2. The M-shaped pattern
shows TE>1.1 and the W-shaped - TE,<0.9.
The M-shaped tetrad effect has been reported
from most granites and igneous systems in
which crystallization and fluid-rock interac-
tions were suggested to be the main mecha-
nisms for producing the tetrad effect (Nardi et
al., 2012).

The kinks in the REE patterns are camou-
flaged by prominent convex tetrad and pro-
nounced negative Eu anomalies. The Chon-
drite-normalized REE patterns of studied
anomalous syenogranite show M-type tetrad
effect similar to that quoted by Masuda et al.
(1987), (Fig. 26). T, is higher than 1.10 with
average 1.2, which clarify that there was an
interaction between melt and water-haloid rich
fluid when these granites are crystallized from
magma.

MINERALOGY OF THE ANOMALOUS
SYENOGRANITE

The heavy fractions of anomalous syeno-
granite samples were subjected to mineral-
ogical investigation. The obtained analysis
clarified the presence of the radio-elements (U
and Th) in the structure of these minerals. The
most important radioactive minerals are:
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Fig. 26: Chondrite — normalized REE pattern of anomalous
syenogranite, Chondrite values are taken from Sun, (1980)

Th and U-Th Minerals

Thorite (Th, U) SiO,

Thorite is the most prevalent radioactive
mineral. It usually occurs with some uranium
replacing thorium. The ESEM analyses data
shows that the thorite consists mainly of Th
(40.5 wt. %), U (9 wt. %), Y (11.5 wt. %) and
Zr (9 wt. %), (Fig.27).

Uranothorite

It is a variety of thorite (uranium variety of
thorite). According to Heinrich, (1958) urani-
um content is usually present in amounts up to
about 10% in uranothorite. The ESEM data of
the studied uranothorite grains illustrated that
the major elements are Th (60 wt. %) and U
(14.5 wt. %) with traces of Y (Fig.28).

Nb- Ta Minerals

Betafite (Ca,U),(Ti,Nb,Ta),0 (OH)

Betafite is a mineral group in the pyrochlo-
re supergroup, with the chemical formula (C
a,U),(Ti,Nb,Ta),0(OH). The analyses show
that betafite is enriched in U (41-61 wt. %), Nb
(12.3-30.3 wt. %), Ta (4-1 wt. %) with traces
of Ti, Y and YD, (Fig.29).

Yttrocolumbite (Y, U, Fe*")(Nb, Ta)O,

The name is derived from its yttrium con-
tent and similarity to columbite. The EDX
analyses show that, Yttrocolumbite is com-
posed mainly of Nb (36 wt. %), Ta (5 wt. %),
Y (13.6 %), U+Th (10.5 wt. %) with traces of
Yb (6 wt. %) (Fig.30).

Fergusonite (YNbO,)

The chemical formula of fergusonite spe-
cies is (Y, RE) NbO,, where RE = rare-carth
elements in solid solution with Y. Fergusonite,
ideally YNbO,, occurs as an accessory min-
eral in granitic rocks, and often combined with
one or more Y, Th, Nb, Ta, Ti oxide accessory
mineral (Lumpkin,1998).

The identification of this mineral is carried
out by ESEM, and have Nb (37wt. %), Y (24
wt. %) and Yb (12 wt. %) with traces of U
(Fig.31).

Samarskite (Y, Fe**, Fe*", U, Th, Ca), (Nb,
Ta),0,

Samarskite is a radioactive with rare earth
and yttrium. It is one of several rare earth ox-
ides. The identification of this mineral is car-
ried out by ESEM, and has Nb (37wt. %), Y
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Fig. 27: EDX spectra and BSE image of thorite.
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Fig.

28: EDX spectra and BSE image of uranothorite
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Fig. 30: EDX spectra and BSE image of yttrocolumbite
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Fig. 31: EDX spectra and BSE image of fergusonite

(19wt. %), Ta (4.2 wt. %) and U+Th (12wt. %)
and REEs (15.3wt. %), (Fig.32).

Ishikawaite [(U, Fe, Y, Ca) (Nb, Ta)O,]

Cerny and Ercit, (1989) describe ishi-
kawaite as a probable uranium-rich variety
of samarskite. The ESEM data of the studied
samples illustrated that ishikawaite has U (34
wt. %), Nb (30 wt. %), Ta (2.4) and Yb+Y
(13.2 wt. %) (Fig.33).

Polycrase-(Y) (Y,Ca, U, Th)(Ti, Nb, Ta),O

It is member of the euxenite group; it is ra-
dioactive due to its uranium content (around
6%). Polycrase forms a continuous series with
the niobium rich rare earth oxide euxenite.
Analysis of polycrase mineral show that it
is mainly composed of Nb (20.3-22 wt.%),
Ti(16-15 wt.%), U+Th(12-12.3 wt.%), Ta(7-

22.8 wt.%) and Y(14-16.5 wt.%) with traces
of Yb(7.4-5.3 wt.%)(Fig.34).

Accessory Minerals
Zircon (ZrSiO)

Zircon occurs as euhedral six-sided or
eight-sided prismatic crystals. Some of the
studied zircon grains show lengthening where
a high fluid content causes the period of zircon
crystallization to lengthen (Pupin et al., 1979).
The separated zircon forms euhedral to subhe-
dral crystals (Fig.35).

Xenotime (YPO,)

The EDX analyses shows that the xeno-
time consists mainly of Y (34.2 wt. %) and P
(10 wt. %) with amounts of REEs (11.5 wt. %)
( Fig.36).
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Fig. 32: EDX spectra and BSE image of samarskite
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Fig. 35: EDX spectra and BSE image of zircon
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Fig. 36: EDX spectra and BSE image of xenotime

Allanite (REEs, Ca, Y),(Al,
Fe™™),(Si0,),(OH)

The studied allanite exhibits enrichment of
light rare earth elements (51.5 wt.%), (Fig.37)
indicating syngenetic allanite (El-Balakssy et
al., 2012).

Monazite [(Ce, La, Th, Nd, Y) PO,]

Monazite is a primary ore of several light
rare earth metals (66 in wt. %), most notably
thorium, cerium and lanthanum. Uranium
may occupy some of the REE sites (0.04 %)
in monazite (Hughes et al., 1991). The EDX
analyses show that monazite in the study area

has REEs (45 wt. %), U+Th (30 wt. %) with
traces of Y (Fig.38).

Cerite (Ce,Ca) (Mg,Fe)(SiO,),(HSiO,) (O
H),

Cerite-(Ce) is the primary lanthanide min-
eral, which formed earlier than bastnaesite and

allanite. The EDX analyses show that cerite in
the study area has Ce (44 wt. %) (Fig.39).

CONCLUSION

Wadi Umm Nafie area displays second-
ary structures which are represented by joints
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and faults, located between lat. 26° 18" - 27°
05" N and long. 33° 23" - 33° 29" E. The rocks
cropping out in the area are older granitoids
(oldest) and younger granites (youngest). The
older granitoids are classified as quartz dio-
rites and younger granites as syenogranites.
Field radiometric survey reveals that, the ra-
dioactivity of the syenogranites is significant-
ly high compared with the older granitoids.
The syenogranites host a zone of radioactive
anomaly (about 1x5m dimensions. It can be
concluded that there more than one stage U
and REEs mineralization, the first is enriched
in the LREEs and need more investigations
for its determination in the shear zone while
the other enriched in HREEs and represented
by the studied sheared rocks. Hydrothermal
alterations are accompanied by an increase in
Si0,, TiO,, only in samples 1, 2& 3, ALO,,
and Na,0, K,O and P,O,, in most samples.
Ba, W, Zr, Sn, As, U, Th, Sr, Bi, Mo, Pb, Zn, Y,
Hf, Li, Rb, Ta, Nb, Ga and a decrease in TiO,),
only in samples 4&5, Fe,O,, MnO, MgO,
CaO and P,O,, only in sample 4, Cr, V, Sc,
Cu, Ni and Co. Tetrad effects are character-
ized by negative Eu anomaly, unusual REEs
pattern and non-CHARAC ratio of isovalents
clarifying fluid-rock interaction from late hy-
drothermal solutions. The solution responsible
for REEs mineralization in the studied gran-
ites are mainly acidic as evidenced from La/Y
ratio, indicating the REEs were leached from
the granite by acidic hydrothermal solutions
resulting in leaching of U and rare earths and
the change in pH conditions by hematitization
to alkaline conditions leading to uranium and
rare earth precipitation.

The anomalous syenogranite samples are
characterized by presences of radioactive min-
erals as thorite and uranothorite; Nb-Ta min-
erals as (betafite, yttrocolumbite, fergusonite,
samarskite, ishikawaite and polycrase); in ad-
dition to some accessory minerals as (zircon,
xenotime, allanite, cerite and monazite).
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