GEOCHEMICAL CHARACTERISTICS OF SOME PERALUMINOUS YOUNGER GRANITE MASSES, EASTERN DESERT, EGYPT

MASOUD S. MASOUD
Nuclear Materials Authority, P. O. Box 530, El-Maadi, Cairo, Egypt

ABSTRACT

Sixteen representative samples of younger granites from Gabal El Mueilha, Gabal Harhagite and Gabal Qash Amir in the central and south Eastern Desert of Egypt were analyzed for major, trace and rare earth elements. Petrographical and geochemical studies revealed that, Gabal Harhagite is monzogranite, while Gabal El Mueilha and Gabal Qash Amir are syeno- to alkali feldspar granites. They are classified as I-type peraluminous granite (A/CNK=1.46-1.67), P-poor (P₂O₅ < 0.07 wt %) and Na₂O-rich (≤ 7.08 wt%) exhibiting differences in their REE contents. Gabal Qash Amir and Gabal El Mueilha are within-plate granite whereas Gabal Harhagite is volcanic arc granite.

Peraluminous granite are good source for the uranium, rare metals (Nb-Ta, Be, W) and rare earths (La,Lu, Nd, Dy,Y) mineralizations are examined for Gabal El Mueilha, Gabal Harhagite and Gabal Qash Amir younger granites. These granites show rare metal contents (Nb = 81, Yb = 20, U = 14, Ta = 25 ppm) and in some rare earth elements (La = 12, Lu = 3, Y = 102, Nd = 17, Dy = 12 ppm). Chondrite-normalized REE diagram shows that Gabal El Mueilha granite samples display strong HREE enrichment relative to LREE which show flat pattern with moderate to strong negative Eu anomalies. On the otherhand Gabal Harhagite and Gabal Qash Amir granite show high enrichment in LREE compared with HREE which display slightly falling slope with strong to low negative Eu anomalies. Field radiometric measurements revealed that the radioactivity level up to 34 ppm (eU). at Gabal El Mueilha granite, at Gabal Harhagite granite reach up to 9.5 ppm (eU), while at Gabal Qash Amir granite reach up to 47 ppm (eU). This type of granites assumed to be a specific type for tin and tungsten mineralizations.
الخصائص الجيوكيميائية لبعض الجرانيتية الحديثة العالمية الألومينا – الصحراة الشرقية - مصر

سعود صلاح سعوود

تم تحليل ستة عشر عينة ممثلة من الجرانيت الحديث لكل من جبل المويلحة و جبل هرهجيت و جبل شرق عامر الصحراة الشرقية - مصر للعناصر الرائدة والشحيحة والناقة. أُسفرت الدراسة الترترورية والجيوكيميائية أن جبل المويلحة يتكون من المنزاجرينييت بينما كل من جبل هرهجيت و جبل شرق عامر يتكون من السياجوانتين إلى الجرانيت اللي فسير ومستمر. هذه الجرانيتات على أنها من النوع 1. جرانيت عالي الألومينا (A/CKN=1.67-1.46) فوق في عصر الفلور، و في عصر النرو، و في عصر أكسيت ويجهد (P.O≤0.07wt%)

وينتشر الخلاف في محتويات 

العناصر الأرضية الداخلة. اظهرت هذه الدراسات أيضا ان كل من جبل المويلحة و جبل شرق عامر ينتموا إلى بيئة قارية بينما جبل هرهجيت ينتمي إلى بيئة قوارس قزمريانية.

يعتبر الجرانيت عالي الألومينا مصدر جيد لمعادن اليورانيوم والمعدن النادر (Nb-Ta, Be, W) ويعبّر عن قصور جرانيتية منها المعدن والعناصر النادرة. تم فحص جرانيت مناطق الدراسة للنهج المعدن والعناصر النادرة.

أوضح الشكل البياني لكودرنيت تطبيق العناصر الأرضية الداخلة أن جبل المويلحة جرانيت عالي العناصر الأرضية النادرة بينما كل من: Eur (LREE) بالمقارنة بالعناصر الأرضية الخفيفة (HREE) اظهرت الخلاصة الأرضية الداخلة أن جبل هرهجيت ارتفاع شديد في نسبة العناصر الأرضية النادرة، ومستمر إلى قليل في عصر Eur بالمقارنة بالعناصر الأرضية النادرة (LREE) مع انخفاض شديد في عصر Eur

اظهرت القياسات الاستشعارية الخفيفة أن مستوى الاستشعار يصل إلى 34ppm(eU) في جبل المويلحة جرانيت و 9.5ppm(eU) في جبل هرهجيت جرانيت بينما 47ppm (eU) في جبل شرق عامر جرانيت.

Na2O-rich(≤7.08wt%)

P2O5 <0.07 wt%